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Abstract — The stability of the sodium crystal and its failure mechanism are investigated by the molecular
dynamics method. The superheating of the bee crystal in the model is 0.09 T,,. On apprroaching the disordering
temperature, T*, first the shear modulus, ¢, — ¢, and then ¢}, go to zero, whereas ¢y retains a nonzero value
even at T*. The bee crystal begins to fail with the irreversible slip of the particles in the most populated plane
(110). In the metastable region, the temperature dependence of the pressure derivatives of the second-order
elastic constants, as determined from the calculated second and third-order elastic constants, has a sharp peak
whose position corresponds to the disordering temperature.

INTRODUCTION

When placed in isothermal conditions, free-surface
crystals will melt at some fixed temperature, T*, which
is, as a rule, the same as the melting point, T, estab-
lished by the equality in chemical potential between
the coexisting phases. The absence of superheating,
AT=T*-T, =0, is ascribed [1] to the influence of the
surface, that is, T* at the surface is lower than it is in
the bulk of the crystal. Melting as a phase transition of
the st order presupposes the presence of a metastable
state — a superheated crystal (AT # 0). With a super-
heating, at least one of the above listed conditions is
violated: either the crystal is placed in nonisothermal
conditions or it is embedded in the matrix of another
material (its surfaces are not free). The former case can
occur [2] if the metal specimen is superheated by an
electric current, and the latter [3] when crystallites
embedded in some other material are heated. A quan-
tity of particular interest is the limiting superheating of
the crystal, which can conveniently be written in
dimensionless form as AT/ T,,. Computer simulation
offers a means of determining not only the relative lim-
iting superheating but also the physical properties of
the superheated crystal and the disordering mechan-
ism. In this respect, the molecular dynamics (MD)
method is unique. The introduction of periodic bound-
ary conditions eliminates the possibility that the crys-
tal will melt at the surface. On the other hand, the
conditions of the MD experiment come very close to
being adiabatic. Born’s theory [4] is among the few
that explain the stability of the superheated crystal.
According to Born [5], the crystal fails when the shear
modulus goes to zero. The manner in which the shear
modulus of the cubic crystal varies with temperature is
described by an expression of the form [4]
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Ou = Oy (L=T/TY", (1)

where c24 is the shear modulus of the crystal at 7 = 0.
However, in order to account for the likely superheating
of the crystal, (1) should be modified by replacing T,
with the disordering temperature, T*, of the crystal. The
curve described by Eq. (1) is characterized by a rapid
decrease of ¢l with increasing temperature, and its cur-
vature acquires a sign opposite to that of the experimen-
tal curve ci,(7). In the molecular-dynamics model of
argon (a fcc crystal), an abrupt decrease in ci, to zero
has been observed at T'= T* [6]. In such a case, Eq. (1)
gives a poor fit to the actual behavior of cl,. As will be
recalled, in terms of its structural features the bec crystal
is closer to a liquid than is the fcc crystal. For example,
in the structural diffusion model [7] the radial distribu-
tion function describes the structure of the liquid better
when the bec lattice is chosen as the basis. Furthermore,
for the establishment of a one-to-one correspondence
between the structures of the liquid and the crystal, with
the bec lattice smaller displacements are required of the
particles than is the case with the fcc crystal.

From the viewpoint of modeling, the simplest bee sol-
ids are the alkali metals because they have a nearly spher-
ical Fermi surface. Our choice is sodium. In the stable-
state region of the sodium crystal (T< 7,,"" = 371 K), the
elastic constants have been determined both by experi-
ment [9, 10] and by calculation [11]. Furthermore, they
have been calculated by the Monte-Carlo method [12]
and by the molecular dynamics method [13]. The least
accessible regions for measuring the c¢j; of sodium are
the low-temperature region (0 < T < 78 K) and the high-
temperature region (7> 371 K, the superheated crystal).
In the low-temperature region, a martensitic bee-to-hep
transformation has been observed [14]; it proceeds as a
Ist order phase transition and gives rise to a large hyster-
esis in the properties of the sodium crystal. In metals,
superheating takes place with fast processes where the
equilibrium properties of crystals are difficult to deter-
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Fig. 1. Additive pair interaction potential after Schiff [16] for
sodium. Potential parameters: o= 0.324 nm, £/k = 599 K.

mine. Theoretical calculations [15] are complicated by
the noticeable anharmonism of crystals at high tempera-
tures and by the presence of a great number of vacancies.

The present study attempts to answer the following
questions. To what extent is Born’s concept of mechan-
ical instability applicable to the bce crystal? Which
type of deformation is primarily responsible for the
instability of the superheated bcc crystal? What
accounts for the differences and similarities in the dis-
ordering mechanisms of the bee and fee crystals? What
is the limit for the superheating of the bcc crystal?
Additionally, we trace the response of the elastic con-
stants of the crystal to variations in internal pressure
over a wide temperature range.

CALCULATION OF THE ELASTIC PROPERTIES

The model crystal was heated stepwise, beginning
from 17 K. The starting configuration was the ideal bce
lattice. The number of atoms in the basic cell was
N = 128. The time step in integrating the equations of
motion was set at Ar = 2 x 107" s. Every succeeding
state of the system was calculated from the last config-
uration of the preceding state. At every next tempera-
ture, the system was first brought to equilibrium on the
interval ~5000A¢, and the elastic properties of the crys-
tal were usually calculated on the interval ~15,000At.
The temperature was changed by scaling the veloci-
ties of the particles at every time step. The interaction
of particles in the model was described by Schiff’s
potential [16]. The range of action of this effective
pair potential (Fig. 1) is limited by the radius ry;,
(D(r,;,) = 40kT,,) on the left and by the maximum size
of the MD cell, 7., = 3L, on the right, where k is the
Boltzmann constant and L is the edge of the basic cell.

For cubic crystals the conditions of thermodynamic
stability can be defined as

T/¢c,>0 ¢, >0 ¢3>0 ¢, —¢p>0, (@)
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where ¢, is the heat capacity at constant pressure and
c,-Tj are tile isothermal second-order elastic constants.

The first inequality in Eq. (2) is the thermal stability
criterion of the crystal, and the next three inequalities are
related to its mechanical stability. In this paper, we are
concerned solely with the mechanical stability of the
sodium crystal. Isothermal compressibility is connected
to the elastic constants c,-TJ- by a relation of the form

B, = 3/ (ci+2¢1) - 3)

The calculations were made on the NVE ensemble,
that is, under the assumption of constancy of the num-
ber of particles N, the volume of the MD cell V, and the
internal energy E. The temperature dependence of the
isothermal elastic constants is represented by the quasi-
isobar p = 20 + 10 MPa. The pressure was determined
by the Clausius virial theorem

NkT 1 a® (r;)
- B o M 4
P="y ~3yky ar, &
i>]
The second-order elastic constants were calculated
by the technique proposed in Ref. [17]
T

B B a
cij = cij+c§j+Ac,.j+Ac,-j, (5

where cf; and ¢/; are the Born and fluctuation terms,
resgectivcly [17]. The correction for the Born term,
Agjl = €y — cl, was found for a static ideal lattice,
where c}'} is the elastic constant of an infinite lattice and
¢V is the elastic constant of a cubic lattice containing

atoms.

In order to derive the canonical ensemble average
from the MD average, one needs corrections of value
~N-1. For the second-order elastic constants such cor-
rections are [18]

NKT (yey— 1)* ©6)

e e
ACH = ACD =
Cy

Ac, = 0, 0

where v is the Griineisen constant and ¢y is the specific
heat at constant volume. The values of 7y for the molec-
ular-dynamics model of the sodium crystal are deter-
mined in Ref. [15].

The cubic crystal is characterized by six indepen-
dent third-order elastic constants: ¢]y;, ¢l12, Clas, Clas
cl, and clss (in Voigt notation). In the general form,
the expression for cfj is written as

cg;-k = cg-t + c{j‘-k + c{jk - Acg-k + Aci (8
Here, two fluctuation contributions are isolated. One
can be written as c{}k = 1/ (VkT) (fluctuation terms), and
the other, as ¢, = 1/ (V(kT)?) (fluctuation terms). The
Bomn term c?, and its correction, Acjj,, are the same as
the corresponding contributions to the second-order
elastic constants, whereas the ensemble correction,
Acy, is given, according to Ref. [6], by
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ey B

Ac; Cijp T cr;k) ®)

ijk = = (T) (
where the French quotes, {...), designate a time average.
The equations for the calculatlon of the Born and fluc-
tuation contributions to C,Jk are: even. more unwieldy
than for the corresponding terms of c¢]; [6]; accordingly,
we leave them out here. Note only that the contribu-
tions ¢f};, c{ L and c{lk contain the sums of the first, sec-
ond and third-order derivatives of the interatomic
interaction potential.

Thc Tpressure derivatives of ¢/; j» of the shear modulus
-c 17)/2 and of the isothermal bulk modulus
BT— BT are given by Refs. [19, 20]

dc
—dél ——(ZC“+2CIZ+C“1+2C“2)/(3B)
de;
12
r3 el Cu C|2+Clz3+20112)/(38)
dey,

d—; =—(c“+2r:12+c44+cl44+26'mﬁ)/(33 i
ds” T T T r i
& =—{3¢; +3Cis+Chiy —Cim) 7 (68)3

T
c% = —(c1y; + 601, + 20{23) / (9B").

(10)

The third-order elastic constants play an important
role in solid-state physics. They can be used [21] to
construct the interatomic interaction pair potential. To
a first approximation, these constants allow the calcu-
lation of the anharmonic terms of the interaction
potentlal and the gencrahzcd Griineisen constant. The
moduli ¢/, are used in the stability analysis of heavily
strained f ttices. Note that from ultrasonic measure-
ments one can determine the mixed [22] (adiabatic-
isothermal) constants ¢ . In order to calculate the iso-
thermal elastic constants ¢f; by resort to c;;, one must
know the heat capacity at constant volume ¢y and the
derivatives dcj; / dT.

RESULTS

The melting point in the model has been found from
the break point (Fig. 2) in the potential energy versus
temperature curve. The value thus found, T,, =423 K, is
higher than the melting point found by a physical exper-
iment (=371 K) and in the MD model of sodium [23]
(=396 K), with a pseudopotential dependent on the den-
sity of the electron gas. The rms displacement of parti-
cles at T,, has been found to be 24% of the lattice
constant, which agrees with the Lindemann criterion [1].
The internal energy increases with temperature more
quickly at 7> T,, than at the lower values of T. The last
two calculations (7'= 460 K and T = 470 K) were made
beginning from the last configuration corresponding to
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Fig. 2. Temperature variations of the bee crystal on heating
and on failure and on cooling: T(E) of the crystal (1), T(E) of
the liquid (2), T(U) of the crystal (3). Here E is the internal
energy of crystal, and U is its potential energy.

T =453 K. In the second calculation a state described by
the liquid branch was all but reached (curve 2 in Fig. 2).
Below T,,, curve 2 characterizes a supercooled liquid.

The time required to calculate the elastic properties of
the crystal increases w1th 1ncreasmg temperature. The
worst convergence of Cu and c]. i« 18 in the failure reglon
of the crystal. An irreversible structural rearrangement in
the sodium crystal occurs at T~ 460 K, that is, at a rela-
tive superheating of (T* - T,)/ T,, = 0.09%. The elastic
constants c;; converge more slowly than do c,J Slowly
damped fluctuations at large time intervals, leading to a
considerable (~30%) statistical error, were observed
only for ¢!}, and ¢l The error in determining the elastic
constants c;; does not exceed 5% even at T> 453 K.

The temperature dependence of the second-order
elastic constants, which characterize the stability of the
crystal is illustrated in Fig. 3. In the low-temperature
region (T < 70 K), the modulus s™ = =(cl -cHr goes to
zero; a likely martensitic transformation in the sodium
crystal is thus predictable. In the crystal-liquid transi-
tion region, the first modulus to go to zero is likewise
the modulus s7, followed by c};. The modulus s” char-
acterizes the shear deformation in the (110) plane
which, in the bec lattice, is most populated. Note that in
the fcc lattice the (111) plane is the most populated. The
modulus p7, which characterizes the slip of particles in
that plane, is the first to go to zero [24] upon the failure
of the fcc argon crystal. For the bee sodium crystal, the
elastic constant c],, which is related to uniaxial tension
in the {100} direction, remains nonzero at 7%,

Among the third-order elastic constants, only ¢1,;and
¢l undergo great change at T < 100 K (Fig. 4). How-
ever, as the crystal approaches the d:sordermg tempera—
ture, the change is most noticeable in ¢, and c,,. The
behavior of ¢;;,(T) does not characterize the stablllty of
the crystal directly. Howcvcr the constants C,Jk, when
taken together with c,], do reflect the behavior of the
pressure derivatives of the elastic constants (10). In the
model, no rapid changes were observed in any of the
five derivatives (dc},/dp, dc},/dp, dc},/dp, ds"/dp, and
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Fig. 3. Second-order elastic constants of the crystalline
solid. (a): ¥, (1); B (2); s7(3). (b): ¢}y (MD calculation in
the present paper) (1); calculation by Eq. (1) (2); experi-
ment [10] (3).

dB"/dp) for the sodium crystal up to 7,, (Fig. 5); but
changes do rise abruptly when the disordering temper-
ature T* is approached. The second-order constants c;f;,
as well as s7 and B, decrease most significantly in the
temperature range from 423 K to 460 K (Fig. 3). A
superheated crystal with an impaired elasticity
responds more strongly to changes in pressure than
does a stable crystal. As soon as the deformation caused
by the thermal motion of atoms in the crystal becomes
irreversible (T = 470 K), a fall occurs in the derivatives
dc;;/dp, ds"/dp, and dB"/dp.

DISCUSSION

As the present study shows, only a slight difference
exists between the elastic constants c{, and c{, of the
sodium crystal. Notably, at ~0.87,, the shear modulus is
sT= (¢!, = ¢],)/2 = 0.6 GPa. The experimental value of
this modulus, as reported in Ref. [9], is s =0.611 GPa.
The low value of s” implies that the internal stress in a
solid alkali metal does not markedly differ from the
hydrostatic pressure characteristic of a liquid. How-
ever, alkali-metal crystals retain appreciable shear
stresses that cannot exist in a liquid. The marked differ-
ence between the calculated and experimental values of
cl, is ascribed in Ref. [13] to the fact that the second-
order elasticity theory does not give a faithful descrip-
tion of the resistance to shear in the (100) plane. The
resort in Ref. [13] to the pair potential, which explicitly
depends on the volume of the system, does not rectify
the situation. Whereas resort to the pair potential proves
effective in accounting for three- and four-body inter-
actions in the case of the fcc lattice [25], it is not effec-
tive in the case of the bec lattice. In order to determine
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Fig. 4. Third-order elastic constants for crystalline sodium.
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Fig. 5. Pressure derivatives of the second-order elastic con-
stants: dc¥y /dp (1); dcly /dp (2); dely /dp (3); dsT/ dp (4);
dBT/dp (5). The dashed line indicates the portions corre-
sponding to irreversible deformation in the crystal.

the elastic constant ¢, more accurately, one would need
to consider many-body interactions. Estimation of the
relative superheating for solid metals by various exper-
imental techniques yields AT/ T,, < 0.2.

Born’s concept of mechanical instability may be
extended to the bee crystal. The instability point for the
bee crystal is determined by the shear modulus s7,
which is the first to go to zero at the disordering temper-
ature T*. The next to do so is the other shear modulus,
¢, The elastic constant ¢], retains a finite, nonzero
value at T*. In the dynamic model, the failure of the
crystal is caused by shear instability. This concept of
Born’s is not a generally accepted one. The result
obtained by the correlated unsymmetrized method of a
self-consistent field [26] suggests a different mechan-
ism for the failure of the crystal: the first to go to zero
is the bulk modulus BT.
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CONCLUSIONS

The results of the present study and those reported
in Ref. [24] indicate that for cubic crystals of simple
substances the critical deformation is that one associ-
ated with the slip of particles in the most populated
crystallographic plane. For the bec crystal, this is the
(110) plane, and for the fcc crystal, the (111) plane. In
both cases, the elastic constants rapidly decrease to
zero in a narrow temperature interval. The maximum
superheating for the bce crystal (sodium) is ~0.09T,,,
and for the fcc crystal (argon) [6] at p ~ 30 MPa, it is
approximately 0.257,,. As is shown in Ref. [27], the
presence of point defects in the crystal does not affect
its superheating, which means that the superheating,
AT, is practically identical for an initially perfect and an
initially imperfect crystal. The pressure derivatives of
the second-order elastic constants increase abruptly on
approaching T*. The decrease in these derivatives with
increasing temperatures indicates that the structural
rearrangement taking place in the crystal is irreversible
in character. The position taken up by the sharp peak on
the dX / dp versus T curve, where X = ¢}, s7, BT corre-
sponds to the disordering temperature, 7%, of the crys-
tal, as determined when the shear moduli go to zero.
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