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Abstract — The structure of a stable and a superheated sodium crystal (including a failing one) is studied in a
molecular-dynamics model. The radial distribution function of the bce crystal differs in shape only insignifi-
cantly from that of liquid sodium. Variations in the structure of the crystal with increasing temperature are ana-
lyzed using the statistical distributions of Voronoi polyhedra and of their elements. Both the bimodal angle
distribution of the nearest geometrical neighbors and the abrupt decrease in the number of polyhedra of the cub-
octahedron-type point to a complete disorder in the bee crystal.

INTRODUCTION

Melting is a phase transition of the first order. The
crystal can exist above its melting point, T,,, in a super-
heated state. At the disordering temperature, 7%, the
symmetry of the crystal changes stepwise, and the ther-
modynamic variables experience discontinuity. In any
solid there exist shear modes, whereas in a sufficiently
large volume of liquid they cannot propagate. The shear
modulus W is directly related to the velocity u of long-
wave transverse acoustic phonons, u? = L/ p, where
p is the density of the solid.

Part I of this study [1] shows how the elastic proper-
ties of the bce crystal change in the disorder region.
Part II deals with structural changes in the same model.
The object of study is the sodium crystal. Our goal is,
above all, to investigate the physical properties of the
superheated crystal and to gain insight into the disorder-
ing mechanism. To this end, we use the additive pair
interparticle interaction potential [2]. The basic cell con-
sists of 128 particles. The influence of the surface is
counteracted by the use of periodic boundary conditions.

The two-dimensional case offers a better grasp of
the disorder in the crystal. Melting in “two dimensions”
is initiated [3] by the thermal generation of topological
defects in the lattice. However, not only do fundamen-
tal differences exist between a three-dimensional and a
two-dimensional solid, the mechanism by which disor-
der occurs in the crystal is also different. Melting is
related to the loss of order resulting from the short-
wavelength fluctuations of atomic displacements.
Therefore, studying the short-range variations of
atomic packing in the crystal-to-liquid transition region
is important. Computer “experiments” offer a way to
critically appraise the information that coherent X-ray
and neutron scattering experiments yield about the
structure of solids.
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THE STATISTICAL GEOMETRY METHOD
AND THE METRIC PROPERTIES
OF VORONOI POLYHEDRA

The point where order gives way to disorder in the
crystal is established by a detailed study of the three-
dimensional structure using the statistical geometry
method based on the construction of Voronoi polyhedra
(VP). To each particle (atom) there corresponds a poly-
hedron which characterizes the particle’s environment.
The number of faces in the polyhedron is equal to the
number of nearest geometric neighbors. The polyhedra
tightly pack the space occupied by the particles. We
construct VP for the particle configurations averaged at
a time interval of 1000At, where Ar=2x 1075 s, or ~3
to 6 periods of oscillation of the atoms [4].

The Voronoi polyhedron of an ideal bec lattice has
the shape of a cuboctahedron. Each vertex of a cuboc-
tahedron is formed by the intersection of three planes.
These are standard vertices [5]. A nonstandard vertex of
a VP, that is, a vertex formed by the intersection of four
or more planes, readily splits into two standard vertices
owing to the thermal motion of particles. The shape of
the VP also changes owing to the appearance of new
elements: fine faces and edges. A VP of the cuboctahe-
dron type is highly stable towards thermal fluctuations
(small displacements of particles). Up to a temperature
of 354 K the structure of the crystal being modelled is
characterized by one type of Voronoi polyhedron — the
cuboctahedron (see Fig. 1a). Not until a temperature of
398 K is reached do other types of VP come about. The
typical VP corresponding to a bcc crystal in the disor-
der region has (see Fig. 1b), like the cuboctahedron,
14 faces, each of which differ from each other in size
and shape, and the number of edges in a face ranges
from 3 to 7. In contrast, a cuboctahedron consists of
6 tetragons and 8 hexagons.

Statistically, the analysis of VP and their elements
proceeds in terms of metric and topological features.
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Fig. 1. Voronoi polyhedra of the bec sodium crystal at
T =354 K (a)and T=470 K (b).
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Fig. 2. Angle distributions of nearest geometrical neighbors
forcrystalline sodium at T = 354 K (a), 398K (b), 453 K (c),
and 460 K (d).

The former include the length of an edge; the area of a
face; the volume of a VP; the angle formed by any pair
of nearest geometrical neighbors, with the corner at the
center of the VP. The topological features of polyhedra
characterize the distribution of VP by the number n of
faces, the distribution of faces by the number m of edges
(corners), and the distribution of VP by types which are
classified on the basis of topological indices. Further-
more, mixed distributions can be analyzed [6], such as
the n- and m-distributions, if the fine VP edges are
excluded, or the m-distributions of fine faces. Exclusion
of small-scale thermal fluctuations in the form of fine
faces and edges makes possible the analysis of the aver-
aged structure of liquid in the model. Of the purely met-
ric and topological characteristics, special mention can
be made of the angle distribution of the nearest geomet-
ric neighbors and the distribution of VP types specified
by topological indices. The structure of the crystal in
the model is most precisely identified by means of such
distributions. The angles © made by pairs of nearest
geometric neighbors with the central particle, that is,
the particle around whose center a VP is constructed,
are distributed in the interval [0, 180°]. We consider the
absolute values of these angles. Up to a temperature of
354 K inclusive, the ©-distributions of the bce crystal
(Fig. 2) are represented by six well-resolved peaks. The
first to broaden is the peak at 90° (see Fig. 2a). Ata tem-
perature of 398 K (see Fig. 2b) the number of peaks, g,
in the O-distribution decreases to 4. The four peaks are
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preserved even at T, = 423 K [1], but they are smeared
still more. The smeared peaks indicate that the bcc lat-
tice of the crystal suffers distortion due to the thermal
motion of atoms. The 90° and 120° peaks almost merge
into one at T = 453 K (Fig. 2c). The 0-distribution for
that temperature of the crystal has only three strongly
smeared peaks. This is a distinguishing feature of a
superheated crystal. Finally, at the disordering tem-
perature (T = 460 K), the 6-distribution takes on the
shape of the 8-histogram corresponding to a liquid. This
histogram has only two smeared peaks located at 54°
and 112° To the metastable states of the crystal in
Fig. 2 there correspond histograms with ¢ = 3. The
number g for a superheated crystal takes on a value
which stands midway between those for a stable crystal
and liquid.

DESCRIPTION OF CRYSTAL STRUCTURE
IN TERMS OF TOPOLOGICAL INDICES

The type of a Voronoi polyhedron can be defined
with topological indices [5]. Each index, n,,, is the num-
ber of m-gonal faces in a VP. For example, ns, n,, ns are
the numbers of trigonal, tetragonal, pentagonal, etc.
faces in a given polyhedron. Any VP is characterized
by a set of topological indices (n3, ny, ns, ..., n;, ...), and

oo

the total number of faces ina VPis n = an. Statis-
f=4
tical analysis of configurations in this case reduces to
determining the frequency of the occurrence of a spec-
ified list of indices. Figure 3 gives the histograms show-
ing the frequencies of occurrence of sets of topological
VP indices for the bce crystal. They are arranged in
increasing order of the probability of occurrence for a
VP of a given type. The lists of topological indices are
given immediately below the histograms, and the low-
est line gives the total number n of VP faces.

In the temperature range from 17 to 354 K inclusive
(Fig. 3a), only one type of polyhedron, (0 6 0 8 0), that
is, a cuboctahedron, occurs. At 398 K, however, other
VP types (Fig. 3b) appear, but the cuboctahedron still
occurs rather frequently (~75% of all VP are the
(06 08 0) type). As the temperature of the superheated
crystal is raised, the number of VP types increases. The
structure of the bee crystal at T=453 K (see Fig. 3¢) is
dominated by the (0 4 4 6 0) type, which accounts for
~32% of all VP modifications. Next in probability of
occurrence (~17%) is the (0 6 0 8 0) type. Polyhedra of
the (0 4 4 6 0) type are likewise more probable [7] in the
distorted fcc structure that is formed in the MD model.
When used alone to identify the structure, the topolog-
ical indices are unable to distinguish between the fcc
and bec lattices strongly distorted by thermal motion.
Both the rhombic dodecahedron, (0 12 0 0 0), in the
case of the fcc lattice, and the cuboctahedron, in the
case of the bec lattice, are readily reducible topologi-

cally to a polyhedron of the (0 4 4 6 0) type. The pro-
portion of type (0 6 0 8 0) VP decreases with the
increasing temperature of the crystal, and at 460 K they
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Fig. 3. Frequency of occurrence of VP classified in terms of
topological indices in the MD model of the sodium crystal.
The temperatures corresponding to (a), (b), (c), (d) are the
same as in Fig. 2.

are completely absent (Fig. 3d). Fragments of the bcc
structure are not preserved in liquid sodium. The simple
liquid, of which molten sodium is an example, shows a
certain structural similarity to the Bernal model of
irregularly packed solid spheres [8] and does not corre-
spond to the model of a liquid containing paracrystal-
line microdomains [9]. Up to 30% of the VP occurring
upon failure of the crystal are polyhedra of two types:
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Fig. 4. Radial distribution functions for crystalline sodium.

(0446 0)and (03 6 40). The third most common poly-
hedron is the pentadecahedron of the (03 6 6 0) type; it
accounts for not more than 10% of the total number of
VP occurring upon failure.

THE RADIAL DISTRIBUTION FUNCTION

The ability of the crystal to scatter X-rays and neu-
trons in a coherent way is assessed in terms of the struc-
ture factor, which can readily be reduced to the radial
distribution function g(r) by taking its Fourier trans-
form. Each value of the radial distribution function for
a one-component system is given by an expression of

the form [10]
2v - 2

——SU([r,-r] -, @

4rr ArN ;S

where v = V/ N is the volume per particle, r; is the

radius of the k-th spherical layer described around the

center of the i-th particle, Ar is the thickness of the
layer, and U is the inverse linear interpolation function

i {1 — E| /AP, |& <AP
(2 = 0, & 2 Ar

g(r) =

@)

The inverse linear interpolation over particles j is car-
ried out on a grid of concentric spherical cells with a
center at the i-th particle.

The calculated g(r) for the bce crystal, with the
exception of the curves corresponding to 7= 181, 423,
and 460 K, are shown in Fig. 4. Even at 17 K the ther-
mal motion noticeably hinders the identification of the
structure. The first four peaks of g(r) are as yet well-
defined, but the fifth peak formed by the eight particles
of the next coordination shell of radius R, = 3"
(where a is the lattice constant) shows up only as a sub-
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peak in the 4th maximum of the radial distribution
function. At 99 K, this subpeak disappears completely.
Furthermore, the second peak, which reflects the
arrangement of six neighbors on the sphere of radius a,
appears merely as a subpeak of the first peak. At 181 K,
the remainder of this subpeak is but a small “shoulder”
which in turn disappears at 256 K. The last of the
remaining three peaks merge into one with the next rise
in temperature (7 = 354 K) and form the left-hand
shoulder of the last peak. The shoulder is still clearly
visible at 398 K and 423 K, becomes very faint at
453 K, and disappears completely at 470 K. The last
state of the system is a liquid state. That the second
peak of g(r) shows no singularity at this temperature
reflects complete irregularity in the arrangement of
atoms in the model. In its shape, the radial distribution
function near 7T, corresponds to the g(r) of a liquid
rather than of a crystal.

In summary, the traditional method of structure
identification in the model with the aid of g(r) is not as
accurate as the statistical geometry method based on
the construction of Voronoi polyhedra. The one-dimen-
sional function g(r) inadequately reflects the structural
changes that occur in the bee crystal in the high temper-
ature region.

CONCLUSIONS

The joint statistical analysis of the metric and topo-
logical properties of Voronoi polyhedra gives a detailed
view of the structural changes that occur during a crystal-
to-liquid transition. In the case of the bcc crystal, the
radial distribution function, when used alone, does not
distinguish unambiguously between the superheated
crystal and liquid states. The failure point of the crystal
can conveniently be determined from the shape of the
angle distribution of the nearest geometric neighbors.
The 6-distribution corresponding to the liquid state has
2 peaks (g = 2), that of the stable bcc sodium crystal has
4 < g <6, and that of the metastable crystal, g = 3. The
increase in the superheating of the bec crystal is accom-
panied by a decrease in the probability of occurrence for
VP of the (0 6 0 8 0) type, this being the basic structural
element of the stable sodium single crystal.
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