Воскресенье, 19.05.2024, 00:05
Watercluster.ucoz.ru
Hallo Гость | RSS
Site Menu
Categories
Physics Letters A [1]
ChemElectroChem [1]
Phys.Chem.Chem.Phys. [1]
Russian Journal of Physical Chemistry A [1]
Physics of the Solid State [1]
Journal of Applied Electrochemistry [1]
Russian Metallurgy (Metally) [1]
Journal of the Serbian Chemical Society [1]
Letters on Materials [2]
AIP Conference Proceedings [1]
Computation [1]
Journal of Molecular Liquids [1]
Site Statistics
Главная » Статьи » 2019 » Computation

Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping

Computational Study of Lithium Intercalation in Silicene Channels on a Carbon Substrate after Nuclear Transmutation Doping

 

Computation, 2019, Volume 7, P. 60

Alexander Galashev, Ksenia Ivanichkina, Konstantin Katin, Mikhail Maslov

 

Abstract — Silicene is considered to be the most promising anode material for lithium-ion batteries. In this work, we show that transmutation doping makes silicene substantially more suitable for use as an anode material. Pristine and modified bilayer silicene was simulated on a graphite substrate using the classical molecular dynamics method. The parameters of Morse potentials for alloying elements were determined using quantum mechanical calculations. The main advantage of modified silicene is its low deformability during lithium intercalation and its possibility of obtaining a significantly higher battery charge capacity. Horizontal and vertical profiles of the density of lithium as well as distributions of the most significant stresses in the walls of the channels were calculated both in undoped and doped systems with different gaps in silicene channels. The energies of lithium adsorption on silicene, including phosphorus-doped silicene, were determined. High values of the self-diffusion coefficient of lithium atoms in the silicene channels were obtained, which ensured a high cycling rate. The calculations showed that such doping increased the normal stress on the walls of the channel filled with lithium to 67% but did not provoke a loss of mechanical strength. In addition, doping achieved a greater battery capacity and higher charging/discharging rates.

 

 

PDF file

Категория: Computation | Добавил: watercluster (09.12.2019)
Просмотров: 179 | Рейтинг: 0.0/0 |
Всего комментариев: 0
Имя *:
Email *:
Код *:
Login Form
Site Search
All rights reserved. This website is owned and operated by Professor Galashev A.Y. In the case of reprint the reference to this site is must be. 620219, S. Kovalevskaya Str., 20a, Yekaterinburg, Russia © 2024