Воскресенье, 05.05.2024, 16:37
Watercluster.ucoz.ru
Hallo Гость | RSS
Site Menu
Categories
Applied Sciences [1]
Materials [2]
Russian Journal of Physical Chemistry B [1]
The Journal of Physical Chemistry B [1]
Nuclear Engineering and Technology [1]
International Journal of Molecular Sciences [1]
Physical Chemistry Chemical Physics [1]
Electrochemical Materials and Technologies [2]
Journal of Physics and Chemistry of Solids [1]
Journal of the Serbian Chemical Society [1]
Russian Journal of Physical Chemistry A [1]
High Temperature [1]
Site Statistics
Главная » Статьи » 2023 » High Temperature

First-Principal Study of Proton Transfer in Metal Oxide Perovskite

First-Principal Study of Proton Transfer in Metal Oxide Perovskite

 

High Temperature, 2023, Vol. 61, No. 3, pp. 350–357

A. E. Galashev

 

Abstract — The mechanism of proton conduction of defect-free perovskite LaScO3 was investigated by ab initio molecular dynamics. The effects of the initial location and speed of a proton, the electric field, and the temperature of the system on the behavior of a proton in metal oxides of the perovskite type are considered. It is shown that the temperature of the system is the main factor affecting the speed of proton movement. The Arrhenius temperature behavior of proton conduction is found. In the absence of oxygen vacancies, the direction of proton movement in a crystal with a perovskite structure is determined by its interaction with lattice phonons; i.e., proton migration through metal-oxide perovskite has a polaronic character. Better understanding of the nature of proton migration along the perfect perovskite is one of the ways to improve the characteristics of clean energy devices.

 

 

PDF file

Категория: High Temperature | Добавил: watercluster (06.03.2024)
Просмотров: 11 | Рейтинг: 0.0/0 |
Всего комментариев: 0
Имя *:
Email *:
Код *:
Login Form
Site Search
All rights reserved. This website is owned and operated by Professor Galashev A.Y. In the case of reprint the reference to this site is must be. 620219, S. Kovalevskaya Str., 20a, Yekaterinburg, Russia © 2024