Суббота, 18.05.2024, 17:07
Watercluster.ucoz.ru
Hallo Гость | RSS
Site Menu
Categories
Applied Sciences [1]
Materials [2]
Russian Journal of Physical Chemistry B [1]
The Journal of Physical Chemistry B [1]
Nuclear Engineering and Technology [1]
International Journal of Molecular Sciences [1]
Physical Chemistry Chemical Physics [1]
Electrochemical Materials and Technologies [2]
Journal of Physics and Chemistry of Solids [1]
Journal of the Serbian Chemical Society [1]
Russian Journal of Physical Chemistry A [1]
High Temperature [1]
Site Statistics
Главная » Статьи » 2023 » Materials

Molecular Dynamics Simulation of Thin Silicon Carbide Films Formation by the Electrolytic Method

Molecular Dynamics Simulation of Thin Silicon Carbide Films Formation by the Electrolytic Method

 

Materials 2023, 16, 3115

A. Galashev, K Abramova

 

Abstract — Silicon carbide is successfully implemented in semiconductor technology; it is also used in systems operating under aggressive environmental conditions, including high temperatures and radiation exposure. In the present work, molecular dynamics modeling of the electrolytic deposition of silicon carbide films on copper, nickel, and graphite substrates in a fluoride melt is carried out. Various mechanisms of SiC film growth on graphite and metal substrates were observed. Two types of potentials (Tersoff and Morse) are used to describe the interaction between the film and the graphite substrate. In the case of the Morse potential, a 1.5 times higher adhesion energy of the SiC film to graphite and a higher crystallinity of the film was observed than is the case of the Tersoff potential. The growth rate of clusters on metal substrates has been determined. The detailed structure of the films was studied by the method of statistical geometry based on the construction of Voronoi polyhedra. The film growth based on the use of the Morse potential is compared with a heteroepitaxial electrodeposition model. The results of this work are important for the development of a technology for obtaining thin films of silicon carbide with stable chemical properties, high thermal conductivity, low thermal expansion coefficient, and good wear resistance.

 

 

PDF file

Категория: Materials | Добавил: watercluster (17.04.2023)
Просмотров: 72 | Рейтинг: 0.0/0 |
Всего комментариев: 0
Имя *:
Email *:
Код *:
Login Form
Site Search
All rights reserved. This website is owned and operated by Professor Galashev A.Y. In the case of reprint the reference to this site is must be. 620219, S. Kovalevskaya Str., 20a, Yekaterinburg, Russia © 2024